Sandra Elizabeth Rodil
Universidad Nacional Autónoma de México, México
Title: Weight loss, corrosion resistance and biocompatibility of titanium oxide coatings on magnesium alloys
Biography
Biography: Sandra Elizabeth Rodil
Abstract
Titanium oxide (TiO2) has been recognized as the active layer responsible for the good biocompatibility and osteogenic properties of the Ti-based medical alloys used for dental and orthopedic applications. Meanwhile, magnesium (Mg) and its alloys are currently widely researched for orthopedic applications, since their mechanical properties are more adequate to balance load transfer between bone and implant, but also due to its biodegradability. Extensive mechanical, in vitro and in vivo studies have been done to improve the biomedical performance of Mg alloys through alloying, processing conditions and surface modifications, including coatings deposition. The main purpose of such modifications is to extend the degradation rate of the alloy in order to match it with bone self-healing time. In this work, we are investigating the use of titanium oxide coatings deposited by physical vapor deposition techniques on high purity Mg alloys. These TiO2 coatings have been extensively evaluated to demonstrate that independent of the substrate into which they are deposited, the coatings have the ability to promote the differentiation of mesenchymal stem cells into the osteoblast lineage, while improving the corrosion resistance of the uncoated metallic substrate and inhibiting bacterial adhesion. Here, we present the preliminary results of the corrosion resistance of the coated Mg-alloys in physiological fluids, their cell biocompatibility and weight loss kinetics.