Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Laszlo Sajti

Laszlo Sajti

Austrian Institute of Technology, Austria

Title: Nanoparticle modified bioactive polymeric and metallic implants

Biography

Biography: Laszlo Sajti

Abstract

We address a detailed biomedical research using different nanomaterials on implant material surfaces that feature strong bioactive properties covering both permanent and biodegradable implant applications. These materials act as local antibacterial and cell-proliferative platforms towards ideal implants with combined properties. These nano-objects are based on ultrapure gold, platinum, silver or iron nanoparticles, equipped with biological functions for specific cellular actions via full-embedding into polymeric matrices or used as coatings on metallic implants. Instead of standard fabrication, we demonstrate short-pulsed laser ablation in liquids that is an entirely precursor-, and stabilizer-free green method, forming contamination-free nanomaterials with remarkable surface loadings in a single-step process. Industrial processing of nanoparticle-embedded polymers by injection molding results in a homogenous embedding whereas the nanoparticles stay stable even in the melted state due to an effective stabilization process during laser ablation that hinders inter-particular agglomeration. This very high homogeneity and stability is especially crucial for catheterization and permanent cardiovascular applications where homogenous surface activity is required. Concerning metallic implant applications, equal channel angular pressing (ECAP)-modified low-alloyed magnesium, as well as pure titanium and titanium alloys will be presented covering a broad range in medical implantology from endosseous-, cochlear-, to artificial heart implants. In case of magnesium, the desired combination of high biocompatibility, tailored mechanical and degradation properties as well as excellent mechanical properties will be presented and compared to state-of-the-art materials such as the extra-low interstitial Ti 6Al-4V titanium alloy or the unalloyed commercially pure titanium. A modified ECAP procedure reveals formation of an ultrafine grain structure across the whole work piece that allows homogeneous mechanical properties affecting positively its cellular activity. Finally, we report on the detailed mechanical and corrosive properties providing deep insights into its biophysical performance, long durability and mechanical strength even in a biological environment.